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Abstract 

An affine nonlinear autoregressive moving average (NARMA) model is derived from the neural network 
(NN) based general NARMA model in this paper, by using Taylor series expansion. The predictive error of 
this affine NARMA model will be quite acceptable, at least for the control purpose, if the amplitude of 
control input is properly limited. Therefore, an adaptive control scheme based on this model is proposed and 
applied to the design of adaptive power system stabilizer (APSS) since the amplitude of PSS output is usually 
well limited. The feature of this control scheme is that the control input can be online analytically obtained. 
Thus, comparing to the traditional NN based APSS (TAPSS), the affine NARMA model based APSS 
(AAPSS) does not need the training of a NN as neuro-controller, which may be a troublesome and time 
consuming step during the design. Moreover, the AAPSS can generally perform better than the TAPSS. 
Simulation studies on a single machine infinite bus system and a multi-machine system show that the 
AAPSSs can consistently well perform to damp electromechanical oscillations in the systems over a wide 
range of operating conditions. 
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1. INTRODUCTION 
 

Power system stabilizers (PSSs) are accepted as 
the most effective devices to damp the low 
frequency oscillations in power systems. The 
conventional PSS (CPSS) is designed based upon a 
linearized model around a specific operating 
condition [7]. The performance of CPSSs, 
therefore, may significantly deteriorate due to the 
nonlinearities of system and the variation of 
operating condition [1, 4]. 

So far many neural network (NN) based 
techniques have been proposed for the adaptive 
PSS (APSS) design to handle the nonlinear and 
non-autonomous characteristics of power systems. 
One type of NN based APSS is a controller that 
synthesizes the function of the PSSs which are 
designed in different operating conditions and with 
different disturbances [1, 10, 16, 20]. Depending on 
a set of training data generated by the CPSSs [1, 10, 
16], or other types PSSs [20], a NN is first trained 
off-line and then acts online as an APSS. In order to 
ensure the universal adaption capability of the 
APSS, a wide range of operating conditions as well 
as various disturbances have to be considered in the 
design.  

Another type of NN based APSS adopts the 
structure of indirect adaptive control [2, 3, 6, 14, 17, 
19], where an identifier is used to online predict the 
output of the generator and the control law is 
established based upon this identifier. The NN 

identifiers can track the generator dynamic 
accurately and adaptively irrespective of operating 
condition by online updating their weights 
depending on the predictive error [2, 3, 6, 14, 17]. 
However, these identifiers are general nonlinear 
autoregressive moving average (NARMA) models. 
Thus, an additional NN is required to act as the 
neuro-controller, learning the optimal control law 
off-line [2]. Nevertheless, this learning process is 
generally quite troublesome and time-consuming; it 
also suffers the risk of converging to local 
minimum which may make the control performance 
unacceptable. Neuro-fuzzy controllers have been 
proposed to incorporate control experiences as 
fuzzy rules [3, 12, 19]. Therefore, the learning 
process of these controllers may be more efficient 
than that of the neuro-controllers with random 
initial weights. 

It is shown in [9] that using an approximate 
model for the control design may have a better 
control effect than that obtained from a more 
accurate model. This is because the control method 
implemented on the approximate model can more 
adequately consider the structural characteristics of 
the model. In [13], the pole shift (PS) control 
algorithm is applied based on a linear 
autoregressive moving average (ARMA) model 
which approximates the dynamic of the nonlinear 
plant. However, since the generation of control 
input has to solve a nonlinear optimization problem, 
this control algorithm may not be fast enough for 
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online implementation. Compared with the linear 
ARMA model, the NN based NARMA model can 
describe the dynamics of the nonlinear plant more 
accurately. However, because of the nonlinear 
relationship between the plant output and input, the 
solution of optimal control performance cannot be 
online calculated analytically, which will increase 
the computation burden in learning process of 
controller. Meanwhile, the affine transformation 
about NN based NARMA model, which makes the 
control design more tractable and efficient, has not 
been reported in the recent researches. 

In this paper, an affine NARMA model is 
proposed for the control design. This model is 
obtained via implementing Taylor series expansion 
on the NN based general NARMA model. As long 
as the amplitude of the control input is properly 
limited, the affine NARMA can provide 
satisfactory prediction of the plant output, at least 
for the control purpose. Based on this model, an 
adaptive control scheme where the control input 
can be analytically computed online is proposed 
and applied to the design of APSS because the 
amplitude of the supplementary exciting control 
input is generally well confined. This affine 
NARMA model based APSS (AAPSS) can 
generally perform better than the traditional NN 
based APSS (TAPSS) [2, 3, 6, 14, 17]. Moreover, 
the AAPSS does not need to train a NN as neuro-
controller which is required by the TAPSS. 

The paper is structured as follows: Section 2 
introduces the NN based general NARMA model 
and the proposed affine NARMA model. The 
proposed adaptive control scheme is applied to the 
design of APSS in Section 3. Section 4 gives 
comparisons of the AAPSS and the TAPSS. 
Simulation results are reported in Section 5. 
Conclusions are presented in Section 6. 
 
2. NN BASED GENERAL NARMA MODEL 

AND PROPOSED AFFINE NARMA MODEL 
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Fig. 1.  Three-layer feedforward network 

 
In NN based nonlinear control, a three-layer 

feedforward network (Fig. 1) is generally employed 
to identify the dynamic of a single-input-single-
output plant [15]. This identifier (predictor) can be 
mathematically expressed by a general NARMA 
model as follows: 

TT T
i o1 ( )  ( ) by k k kV W U Y b

     (1) 
where 1y k  is the predicted plant output at 

time step 1k ; kU  and kY  are input vectors 
to the network with the following definitions: 

  
T

, 1 ,..., m 1k u k u k u kU       2) 
T

, 1 ,..., n 1k y k y k y kY        (3) 
where y k  and u k  are plant output and 

control input, respectively, at time step k ; W  and 
V  are input weights and layer weights, 
respectively, of the network; ib  and ob  are biases 
in hidden layer and in output layer, respectively;  
is the function vector defined as follows: 

T

1 2 p, ,...,x x x
                    (4) 

where p  denotes the number of neurons in the 
hidden layer;  is the activation function and tansig 
function is used in this paper as follows: 

p2
p 2 1 1xx e

                        (5) 
It has been demonstrated that a well designed 

and trained NN identifier can accurately predict the 
plant output [11]. In other words, the dynamics of 
the nonlinear plant in a neighborhood of the 
equilibrium can be exactly described by the NN 
based general NARMA model, such as (1). 
Nevertheless, the control effect is not only related 
with the accuracy of the model, but also depends on 
the control method implemented on the model [5]. 
For example, due to the special nonlinear structure, 
the gradient descent method is almost the exclusive 
control method for (1), but the control effect may 
be unacceptable because of the intrinsic limitations 
of the method (and this will be addressed in detail 
in the later section). Comparatively, a well 
established control technique can be implemented 
on a model with specific structure which may only 
approximately describe the dynamic of the plant. 
Consequently, a satisfactory control effect can be 
achieved because the controller synthesis makes 
full use of the structural characteristics of the model, 
such as the PS control algorithm implemented on 
the linear ARMA model [13].  

For above considerations, an affine NARMA 
model is proposed in this paper and by taking 
advantage of the structural characteristic of this 
approximate model, an online adaptive control 
scheme is also developed. Expand the right hand 
side of (1) as Taylor series around 0u k  as 

follows: 
0 11 H.O.T.y k g k g k u k            (6) 

where H.O.T.  denotes high order terms; 
0g k  and 

1g k  are calculated as follows: 
T

0 0, 1 ,..., m 1k u k u kU              (7) 
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TT T
0 i( )  ( )k kX W U Y b                    (8) 

0 og bk V X                         (9) 
.22 2

1 1g 4 . 1k e eX Xw V               (10) 

where 1w  represents the first column of W ; , 

/  and 2 denotes dot production, dot division and 
dot square, respectively. It is proved that H.O.T.  is 
bounded by [9]: 

2

2

1
M max : ( )

( )
y k

u k
u k

           (11) 

2H.O.T 0.5M ( )     ( )u k u k             (12) 
where  is the control domain embracing 

0u k . By truncating the H.O.T.  in (6), an 

affine NARMA model which represents a predictor 
is obtained as follows: 

   a 0 11y k g k g k u k         (13) 
where 

a 1y k  is the prediction at time step 

1k  given by the affine NARMA model. 
Obviously, (13) is not as accurate as (1) in 
predicting the plant output. However, the error 
between 

a 1y k  and 1y k  will be also limited 

if u k  is limited, according to (11) and (12). 

Moreover, this error will become smaller as the 
decrease of u k . For example, when the system 

trends to the stable equilibrium at the late stage of 
control, u k  is quite small so that 

a 1y k  is 

very close to 1y k . Since (13) just neglects the 

high order terms with respect to u k , it will be 

more accurate than the linear ARMA model used in 
[13] for the control design which does not contain 
any high order terms. 

In practice, when considering physical limits or 
trade-off of overall system dynamics, the maximum 
amplitudes of control inputs for various industrial 
plants are usually constrained to appropriate values. 
This means, in such case, the difference between 
(13) and (1) will be well limited and the predictive 
error of (13) will be quite acceptable, at least for the 
control purpose. Therefore, (13) is naturally 
employed to facilitate the control design since it is 
in a more tractable form (affine form). The 
proposed adaptive control scheme based on this 
model is introduced and applied to the design of 
APSS, which will be addressed in the next section. 
 
3. PROPOSED ADAPTIVE CONTROL 

SCHEME APPLIED TO DESIGN OF APSS 
 

To improve the objective system dynamic, it is 
expected that the output of the plant at time step 

1k  is minimized by the control input at time step 
k . In this paper, if the amplitude of the plant 

control input is properly limited, 
a 1y k  is 

assumed to be the plant output at time step 1k . 
Therefore the control input at time step k  can be 
obtained by solving the following minimization 
problem: 

2 2
amin 0.5 1 0.5

u k
J k y k u k         (14) 

s.t. 
min maxu u k u                                (15) 

a 0 11y k g k g k u k          (16) 
where minu  and maxu  are lower and upper limits, 
respectively, of the control input;  is the input 
weight factor with positive value used to optimize 
the overshoot and settling time of the response 
curve [17]. 

The solution of (14)-(16) can be analytically 
obtained as follows: 

max c max

*
c min c max

min c min

                  

    

                 

u u k u

u k u k u u k u

u u k u

        (17) 

with the following definition: 
2

c 1 0 1u k g k g k g k         (18) 
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Fig. 2. The structure of AAPSS 

One characteristic of NN identifier is its 
adaption capability. Depending on this, an adaptive 
control scheme based on the affine NARMA model 
is developed in this paper and applied to the design 
of APSS since the output of PSS is always confined 
within a quite small range [7]. The structure of 
AAPSS is shown in Fig. 2. Here the plant output is 
the speed deviation of the generator, while the 
control input is the supplementary exciting control 
input. TDL is the time-delay-line. The adaptive 
control scheme is divided into two stages, which 
are introduced in the following subsections. 
 
3.1. Off-line Training of NN Identifier 

A NN (Fig. 1) is trained off-line as identifier in 
this stage to capture the dynamic of the generator. 
Besides choosing a proper number of neurons in the 
hidden layer, a large amount of training data 
covering various operating conditions and 
disturbances is gathered to assure the generalization 
capability of the network [15]. The training data is 
collected by imposing pseudorandom sequences as 
probing signals to the generators to excite all modes 
of the system [8].  
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3.2. Online Adaption and Control 
In this stage, the online learning capability of 

NN is utilized to cope with the unexpected 
variations of the system [2, 6, 14, 17]. As illustrated 
in Fig. 2, the procedure of online adaption and 
control is presented as follows: 
1) At time step k , sample ( )y k ; 
2) If the error between y k  and ( )y k  is larger 

than the setting value, it is utilized to tune the 
weights and biases of the identifier by using 
error backpropagation algorithm [10]; 

3) The weights and biases are passed to the affine 
NARMA model. With samplings 1kU  and 

kY , *u k  is computed by using (7)-(10), 

(17) and (18); 
4) Apply *u k  as the control input to the 

generator; 
5) With samplings kU  and kY , calculate 

1y k  by using (1) and store it; 

6) Let 1k k , go to 1). 
 
4. COMPARISON OF AAPSS AND TAPSS 
 

If the predictor used in (16) is errorless, the 
solution of (14)-(16) will be the open loop optimal 
control input at time step k . However, if the NN 
based general NARMA model is used as predictor 
in (16), the solution (denoted by *

ou k ) of (14)-
(16) will be very close to the open loop optimal 
control input because the predictive error of the NN 
identifier is quite small. Unfortunately, this solution 
cannot be online obtained analytically because of 
the special nonlinear relationship between 1y k  
and u k . 

In TAPSS, the NN based general NARMA 
model is used as the predictor. Therefore, after 
training the identifier, a neuro-controller [2] or 
neuro-fuzzy controller [14] is generally employed 
in TAPSS to learn the optimal feedback control law 
off-line. It is expected that the control input 
generated by the resulted feedback control law at 
time step k  can approach *

ou k  as close as 
possible. 

To learn the optimal feedback control law, the 
tunable parameters, i.e., weights of the controller 
are commonly tuned by applying the gradient 
descent method [6]. Obviously, this gradient based 
learning process may converge to a local minimum 
due to the infeasible initial values of the 
parameters. Moreover, the selection of tunable 
parameters considerably influences the resulted 
feedback control law [14]. Therefore, for these two 
considerations, the output of the controller at time 
step k  may be far from *

ou k . In AAPSS, as the 
amplitude of the PSS output is well limited, the 
difference between the affine NARMA model and 

the NN based general NARMA model is quite 
small. Therefore, the control input calculated based 
on the affine NARMA model is very close to 

*
ou k . Hence, it can be inferred that the AAPSS 

can always produce the optimal or the near optimal 
control input, while the TAPSS may not guarantee 
an optimal control performance. This means, 
theoretically speaking, the AAPSS generally 
performs better than the TAPSS. 

The controller learning process of TAPSS 
should consider various operating conditions and 
disturbances to ensure its online control 
performance. Moreover, the backpropagation 
through time algorithm which converges slowly is 
generally employed for the learning process [9]. 
Therefore, the controller learning process of 
TAPSS is quite troublesome and time consuming. 
Fortunately, the proposed AAPSS does not require 
this step, which means the design process of the 
AAPSS is much simpler than that of the TAPSS. 
 
5. SIMULATION STUDIES 
 
5.1. Single Machine Infinite Bus (SMIB) System 

The diagram of a SMIB system is shown in Fig. 
3. The detailed models and parameters of this 
system are given in Appendix. The operating 
condition of the generator can be tuned by adjusting 
the voltage reference or the power reference or the 
shunt capacitor. All variables in this paper are 
expressed in per unit, if not specified. 

 

GTurbine

Governor

Exciter &
AVR

tV

AAPSS TAPSS CPSS

T

Inf

 
Fig. 3.  SMIB system 

 
An AAPSS is designed and equipped to the 

generator to damp the electromechanical oscillation. 
m , n  and p  are set to 4, 4 and 10, respectively, for 
the NN identifier. This configuration can lead to a 
satisfactory control performance without increasing 
the complexity of the controller. The sampling 
period is chosen to be 30ms. 

Firstly, the accuracy of the affine NARMA 
model in the AAPSS is validated. For this purpose, 
the following two indexes are defined: 

N

a
1

idx_1:        1 N
k

y k y k       (19) 

  N N

a
1 1

idx_2 :        
k k

y k y k y k                  (20) 

where N is the total number of samplings;  is a 
quite small positive to avoid singularity when 
calculating idx _1  and here it is set to 1e-6. 
Obviously, idx _1  represents the degree of 
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similarity between the affine NARMA model and 
the NN based general NARMA model and as it is 
closer to zero, the difference between them gets 
smaller; idx _ 2  is the average relative predictive 
error of the affine NARMA model.  

The generator is working in an initial condition 
of 0.6988P , 0.1639Q , and t 1.0523V , where 
P , Q  and tV  are active power output, reactive 
power output and terminal voltage, respectively, of 
the generator and it is subject to subsequent 
disturbances of a 0.2 step increase in the torque at 

10st  and a 0.05 step decrease in the voltage 
reference at 20st . During this process, a 
pseudorandom sequence lasting for 30s is applied 
as the supplementary exciting control input. Three 
different input sequences with maximum 
amplitudes (Am) of 0.05, 0.10 and 0.15 are 
generated for tests, respectively. For the three tests, 
idx _1  and idx _ 2  are calculated and given in 
Table I. It is seen that all idx _1 are quite small and 
as Am become smaller, idx _1  is closer to zeros. 
This means the small difference between the affine 
NARMA model and the NN based general 
NARMA model, and it will decrease as the 
amplitude of control input becomes smaller. 
Furthermore, the small values of idx _ 2 imply the 
high accuracy of the affine NARMA model in 
predicting the output of the plant. This can be 
observed in Fig. 4 which illustrates two almost 
overlapped curves: one is the predicted curve of the 
generator speed deviation by the affine NARMA 
model and the other is the corresponding real curve, 
when using the pseudorandom sequence with 
Am=0.10 as the control input. In this paper, the 
lower and upper limits for the supplementary 
exciting control are 0.1, respectively. Therefore, 
according to the analysis present in Section IV, the 
AAPSS will produce the control input that is very 
close to the real open loop optimal control input. 
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Fig. 4. Validation of proposed affine NARMA 

model 
 

 
 

 

Table 1. idx _1 and idx _ 2  for different input sequences 
 Am=0.05 Am=0.10 Am=0.15 

idx_1 1.1746e-4 2.9664e-4 6.2216e-4 
idx_2 6.8223e-4 4.9596e-4 3.8620e-4 
 
The online control performance of the AAPSS 

is now verified. As comparisons, a CPSS and a 
TAPSS are also employed. The CPSS is designed 
in the nominal operating condition of 0.8485P , 

0.2198Q , and t 1.0510V  by using the phase 
compensation technique. The model and parameters 
of the CPSS are given in Appendix. A three-layer 
feedforward network with 10 neurons in its hidden 
layer is employed as the neuro-controller in the 
TAPSS. The control inputs at time step 1k , 2k  
and 3k , together with the plant outputs at time 
step k , 1k , 2k  and 3k  are used as inputs to 
the neuro-controller to produce the control input at 
time step k .  
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Fig. 5. Dynamic of power angle in Scenario A 
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Fig. 6. Dynamic of power angle in Scenario B 
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Fig. 7. Dynamic of power angle in Scenario C 

 
The following scenarios are used for 

demonstrating the control performances of various 
PSSs: 
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 Scenario A: the generator is in the operating 
condition of P=0.8485, Q=0.2198, and Vt=`.0510. 
A 0.15 step increase in the torque takes place at 

1.2st  and it returns to initial value at 7.2st ; 
Scenario B: the generator is operating in the 

leading power factor condition of 0.6489P , 
0.1753Q , and t 1.0544V . A 0.05 step decrease 

in the voltage reference occurs at 1.2st  and it 
returns to initial value at 7.2st ; 

Scenario C: the generator is working in the 
condition of 0.4994P , 0.1123Q , and 

t 1.0536V . A three phase short circuit fault takes 
place at the middle of one transmission line at 

1.2st  and it is cleared by tripping the faulty line 
50ms later. The faulty line is then reclosed at 

7.2st . 
The power angle dynamics of the generator in 

the three scenarios are depicted in Fig. 5, Fig. 6 and 
Fig. 7, respectively. It is observed that the AAPSS 
is able to damp the oscillation of the generator 
rapidly in all scenarios and it generally outperforms 
the CPSS because the design of the CPSS does not 
consider the nonlinear and non-stationary 
characteristics of the system. Moreover, although 
the AAPSS has almost the same control 
performance as the TAPSS, the former actually 
performs slightly better than the latter (i.e., in 
Scenario A and Scenario C). Even so, the 
developing process of the AAPSS is much simpler 
than that of the TAPSS. 
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Fig. 8.  Five-machine power system 

 
5.2. Multi-machine System 

A five-machine power system where there are 
multimode oscillations when it experiences 
disturbances is illustrated in Fig. 8 [18]. An 
interarea oscillation with frequency at about 0.64 
Hz exists between the area with Generators G2, G3 
and G5 and the area with Generators G1 and G4. 
Moreover, Oscillations of local mode with higher 
frequencies reside in each area. The models and 
parameters in detail of this system are given in the 
Appendix. 

To damp the oscillations, the AAPSS can be 
designed for each generator when the PSS control 
loops of other generators are open. The 
coordination of these AAPSSs is fulfilled by their 

online adaption capabilities. m , n  and p  are set to 
4, 4 and 10, respectively, for the NN identifiers in 
all the AAPSSs. The sampling period is selected to 
be 40ms. Two operating conditions which are 
involved in the Appendix are employed for 
simulation studies. The upper and lower limits for 
the PSS output are set to 0.1, respectively, for all 
the generators. 
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Fig. 9. Predictions of affine NARMA models 

(solid line: predictive; dot line: real) 
 

The accuracy of the affine NARMA models used 
in the AAPSSs is verified. As the system is in 
operating condition OP1, apply pseudorandom 
sequences as the supplementary exciting control 
inputs to the five generators, simultaneously.  The 
predictions of the affine NARMA models for 
Generators G1, G2 and G3 are shown in Fig.9. 
Obviously, the almost overlapped curves indicate a 
pretty accuracy of the affine NARMA models in 
predicting the outputs of these generators. In fact, 
the affine NARMA models can also accurately 
track the outputs of Generator G4 and G5, but for 
space limitation they are not displayed. Therefore, 
the highly accurate affine NARMA models can 
theoretically ensure that the AAPSSs generally 
perform better than the TAPSSs. 

CPSSs are then employed as comparisons to the 
AAPSSs and each CPSS is designed in operating 
condition OP1 by using the phase compensation 
technique when other PSSs are out of service. The 
parameters of the CPSSs are included in the 
Appendix. The following testing scenarios are 
utilized to validate the online control performance 
of the AAPSSs: 

Scenario A: PSSs (AAPSSs or CPSSs) are only 
installed in Generator G1, G2 and G3 as the system 
is operating in OP1. A 0.3 step decrease in the 
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torque of Generator G3 occurs at 2st and it 
returns to initial value at 11st ; 
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Fig. 10.  System responses in Scenario A 

(solid line: AAPSSs; dot line: CPSSs; dash 
line: no PSS) 
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Fig. 11.  System responses in Scenario B 

(solid line: AAPSSs; dot line: CPSSs; dash 
line: no PSS) 
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Fig. 12.  System responses in Scenario C (solid 
line: AAPSSs and CPSSs; dot line: CPSSs) 

 
Scenario B: this scenario is the same as Scenario 

A except for different disturbances. A three phase 
short circuit fault occurs at the middle of one 
transmission line between Bus 3 and 6 at 2st  and 
is cleared by tripping the faulty line 100ms later. 
The line is then re-energied at 11st ; 

Scenario C: the system is in the same operating 
condition and subject to the same disturbances as 
those in Scenario B. However here, firstly only 
CPSSs are equipped to Generators G2, G4 and G5. 
Then, as a comparative case, the AAPSSs are 
additionally installed in Generators G1 and G3 to 
cooperate with the existing CPSSs; 

Scenario D: the system is in operating condition 
OP2, while PSSs (AAPSSs or CPSSs) are only 
installed in Generator G1, G2 and G3. A 0.3 step 
decrease in the torque of Generator G3 occurs at 

2st and it returns to initial value at 11st . 
The system responses in these scenarios are 

illustrated in Fig. 10, Fig. 11, Fig. 12 and Fig. 13, 
respectively. It is clear that the AAPSSs can 
cooperatively perform to rapidly damp the 
oscillations in the system in despite of the variation 
of operating condition and the different 
disturbances (Scenario A, Scenario B and Scenario 
D). The performance of the AAPSSs is apparently 
better than that of the CPSSs because each CPSS is 
merely linearly designed in an independent manner 
around a specific operating point. Moreover, 
because of their online learning capabilities, the 
AAPSSs are also capable of coordinating with the 
existing CPSSs to further improve the dynamics of 
the system (Scenario C). 
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Fig. 13.  System responses in Scenario D (solid 
line: AAPSSs; dot line: CPSSs; dash line: no 

PSS) 
 
6. CONCLUSION 
 

An affine NARMA model obtained by 
performing Taylor series expansion on the NN 
based general NARMA model has been proposed 
for the control design. This approximate model is 
accurate enough to predict the plant output for the 
purpose of control design if the amplitude of the 
control input is appropriately limited. 
Consequently, based on this model, an adaptive 
control scheme has been proposed to online 
analytically calculate the control input. This control 
scheme has been suitably applied to the design of 
APSS because the amplitude of PSS output is 
always well limited. Theoretical analysis has shown 
that the AAPSS generally outperforms the TAPSS 
and the developing process of the AAPSS is also 
much simpler than that of the TAPSS. Simulation 
results on a SMIB system and a multi-machine 
system have verified the high accuracy of the affine 
NARMA models used for the AAPSSs. It has also 
been demonstrated that the AAPSSs can well 
perform to adaptively damp the electromechanical 
oscillations in the systems and their performances 
are generally better than those of the CPSSs.  
 
7. APPENDIX 
 
7.1. Models 
1) The synchronous machine with round rotor in 

the SMIB system is represented by a six-order 
model. All synchronous machines in the multi-
machine system are salient-pole machines and 
represented by five-order models [7]. 

2) The excitation systems in both systems consist 

of an IEEE type 1 synchronous machine voltage 
regulator combined to an exciter [20]. 

3) The turbines and governors are presented by the 
following simplified model [2]: 

1 gg a b sT                          (21) 

4) The CPSS has the following transfer function:  

w 31
pss p

w 2 4

11
1 1 1

sT sTsTV K
sT sT sT

     (22) 

 
7.2. Parameters 

The fundamental frequency for both systems is 
60Hz. The benchmark power is 900-MVA for the 
SMIB system and 100-MVA for the multi-machine 
system. The detailed parameters are listed in the 
following tables. 
 

Table 2. 
Parameters of generators in multi-machine system 

 G1 G2 G3 G4 G5 
xd 0.1026 0.1026 1.0260 0.1026 1.0260 
xq 0.0658 0.0658 0.6580 0.0658 0.6580 
xd  0.0339 0.0339 0.3390 0.0339 0.3390 
xd  0.0335 0.0335 0.3350 0.0335 0.3350 
xq  0.0335 0.0335 0.3350 0.0335 0.3350 
xl 0.0094 0.0094 0.0940 0.0094 0.0940 

Td0  5.6700 5.6700 5.6700 5.6700 5.6700 
Td0  0.6140 0.6140 0.6140 0.6140 0.6140 
Tq0  0.7230 0.7230 0.7230 0.7230 0.7230 

H(s) 80.000 80.000 10.000 80.000 10.000 
Tr(s) 0.04 0.04 0.04 0.04 0.04 
Ka 190 190 190 190 190 

Ta(s) 0.001 0.001 0.001 0.001 0.001 
Efmin -11.5 -11.5 -11.5 -11.5 -11.5 
Efmax 11.5 11.5 11.5 11.5 11.5 

a -2e-4 0.0002 0.0015 0.0002 -1.5e-4 
b 0.025 0.025 -0.20 0.025 -0.20 

Tg(s) 0.28 0.28 0.28 0.28 0.28 
Tw (s) 10 10 10 10 10 
T1(s) 0.2957 0 0.2626 0.2017 0.2588 
T2(s) 0.2082 0 0.0522 0.1276 0.0563 
T3(s) 0 0 0.2626 0 0.2588 
T4(s) 0 0 0.0522 0 0.0563 
Kp 50 8 1.5 7 2 

Vmax 0.1 0.1 0.1 0.1 0.1 
Vmin -0.1 -0.1 -0.1 -0.1 -0.1 

 
 Table 3.  

 Parameters of generators in SMIB system 
xd 1.800 xq 1.700 Td0  8.000 
xd  0.300 xq  0.550 Td0  0.030 
xd  0.250 xq  0.250 Tq0  0.400 
xl 0.200 H(s) 8.500 Tq0  0.050 
Ka 200 Ta(s) 0.001 Tr(s) 0.02 

Efmin -10 Tg(s) 0.17 Tw (s) 10 
Efmax 10 T1(s) 0.2778 T2(s) 0.1414 
Kp 16 T3(s) 0 T4(s) 0 

Vmax 0.1 a 0.002 - - 
Vmin -0.1 b -0.20 - - 
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Table 4. 
Parameters of Transmission Lines  

From 
Bus 

To 
Bus r x B 

1 7 0.00435 0.01067 0.03072 
2 6 0.00213 0.00468 0.00808 
3 6 0.01002 0.03122 0.06408 
3 6 0.01001 0.03122 0.06408 
4 8 0.00524 0.01184 0.03530 
5 6 0.00711 0.02331 0.05464 
6 7 0.04032 0.12785 0.31716 
7 8 0.01724 0.04153 0.12028 
1* 2* 0.07200 0.72000 0.24500 
1* 2* 0.07200 0.72000 0.24500 

 
Table  5. 

Operating Conditions for Multi-machine System 
 G1 G2 G3 G4 G5 

OP1  
P 5.133 8.583 0.8055 8.567 0.8501 
Q 6.796 4.422 0.4050 4.662 0.2062 
Vt 1.075 1.05 1.025 1.075 1.025 

OP2  
P 3.168 4.103 0.4708 4.068 0.1647 
Q 2.923 1.405 0.4091 2.189 0.3406 
Vt 1.050 1.030 1.025 1.050 1.025 

 
Table 6. 

Load Admittance  
 L1 L2 L3 

OP1 7.5-j5.0 8.5-j5.0 7.0-j4.0 
OP2 3.755-j2.5 4.25-j2.5 3.5-j2.25 
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